Background

Microwave Cavity Axion Searches

Ben Brubaker

ADMX-HF, Yale University

Dark Interactions BNL June 13, 2014 Background

•000

• The axion is a promising cold dark matter candidate.

Overview

- The axion is a promising cold dark matter candidate.
- Resonant detection in a microwave cavity is the only method with proven sensitivity to the CDM axion model band.

ADMX-HF

Background

- The axion is a promising cold dark matter candidate.
- Resonant detection in a microwave cavity is the only method with proven sensitivity to the CDM axion model band.

ADMX-HF

ADMX is the current leader in this field.

- The axion is a promising cold dark matter candidate.
- Resonant detection in a microwave cavity is the only method with proven sensitivity to the CDM axion model band.
- ADMX is the current leader in this field.
- ADMX-HF will extend the microwave cavity technique to higher masses, with sufficient sensitivity to probe the axion model band.

Theoretical Motivation for Axion CDM

 The axion is a pseudoscalar field motivated by the Peccei-Quinn solution to the strong CP problem.

ADMX-HF

 The axion is a pseudoscalar field motivated by the Peccei-Quinn solution to the strong CP problem.

ADMX-HF

 It is the Goldstone boson of a new symmetry spontaneously broken at a scale f_a .

Theoretical Motivation for Axion CDM

 The axion is a pseudoscalar field motivated by the Peccei-Quinn solution to the strong CP problem.

ADMX-HF

- It is the Goldstone boson of a new symmetry spontaneously broken at a scale f_a .
- Axion mass and couplings suppressed by $f_a: \Rightarrow m_a \propto g_{ayy}$

- The axion is a pseudoscalar field motivated by the Peccei-Quinn solution to the strong CP problem.
- It is the Goldstone boson of a new symmetry spontaneously broken at a scale f_a .
- Axion mass and couplings suppressed by $f_a: \Rightarrow m_a \propto g_{ayy}$
- Light axions associated with new physics at high energies can be dark matter!

*: A. Ringwald, Phys. Dark. Univ. 1, 116 (2012).

Background

0000

 SN 1987A axion emission too efficient for $m_a \gtrsim 10$ meV.

- SN 1987A axion emission too efficient for m_a ≥ 10 meV.
- $\Omega_a \propto m_a^{-7/6}$: axion dark matter fraction negligible for $m_a \gtrsim 1$ meV.
- too much dark matter (?) for m_a ≤ 1 μeV.

(At least) 3 orders of magnitude to scan.

- (At least) 3 orders of magnitude to scan.
- Coupling is so small that we must use intrinsically narrow-band resonant detection.

Background

0000

Very light particles ⇒ huge number density.

ADMX-HF

- Very light particles ⇒ huge number density.
- Virialization: $v \sim 270 \text{ km/s} \rightarrow \beta \sim 10^{-3}$

- Very light particles ⇒ huge number density.
- Virialization: $v \sim 270 \text{ km/s} \rightarrow \beta \sim 10^{-3}$
- Axion signal "quality factor:"

$$Q_a = E_{\text{mass}}/E_{\text{kin}} = \beta^{-2} \sim 10^6$$

- Very light particles ⇒ huge number density.
- Virialization: $v \sim 270 \text{ km/s} \rightarrow \beta \sim 10^{-3}$
- Axion signal "quality factor:" $Q_a = E_{\text{mass}}/E_{\text{kin}} = \beta^{-2} \sim 10^6$
- Coherence length: $\lambda_a \sim \pi/m_a\beta \sim 100$ m for $m_a \sim 10^{-5}$ eV.

- Very light particles ⇒ huge number density.
- Virialization: $v \sim 270 \text{ km/s} \rightarrow \beta \sim 10^{-3}$
- Axion signal "quality factor:" $Q_a = E_{\text{mass}}/E_{\text{kin}} = \beta^{-2} \sim 10^6$
- Coherence length: $\lambda_a \sim \pi/m_a\beta \sim 100$ m for $m_a \sim 10^{-5}$ eV.
- More like a classical field than particles.

 Sikivie*: search for axions with photon coupling $\mathcal{L} \subset g_{a\gamma\gamma} a \mathbf{E} \cdot \mathbf{B}$.

^{*:} P. Sikivie, Phys. Rev. Lett. **51**, 1415 (1983).

- Sikivie*: search for axions with photon coupling $\mathcal{L} \subset g_{a\gamma\gamma} a \mathbf{E} \cdot \mathbf{B}$.
- The Primakoff Effect: classical field at one leg to compensate for weakness of vertex.

^{*:} P. Sikivie, Phys. Rev. Lett. **51**, 1415 (1983).

- Sikivie*: search for axions with photon coupling $\mathcal{L} \subset g_{a\gamma\gamma} a \mathbf{E} \cdot \mathbf{B}$.
- The Primakoff Effect: classical field at one leg to compensate for weakness of vertex.
- Kinematics: $m_a = v \sim 250 \text{ MHz} 250 \text{ GHz}.$

^{*:} P. Sikivie, Phys. Rev. Lett. **51**, 1415 (1983).

Background

- Sikivie*: search for axions with photon coupling $\mathcal{L} \subset g_{a\gamma\gamma} a \mathbf{E} \cdot \mathbf{B}$.
- The Primakoff Effect: classical field at one leg to compensate for weakness of vertex.
- Kinematics: $m_a = v \sim 250 \text{ MHz} 250 \text{ GHz}.$
- Resonant enhancement by Q of cavity.

*: P. Sikivie, Phys. Rev. Lett. **51**, 1415 (1983).

- Sikivie*: search for axions with photon coupling $\mathcal{L} \subset g_{a\gamma\gamma} a \mathbf{E} \cdot \mathbf{B}$.
- The Primakoff Effect: classical field at one leg to compensate for weakness of vertex.
- Kinematics: $m_a = v \sim 250 \text{ MHz} 250 \text{ GHz}.$
- Resonant enhancement by Q of cavity.
- Cryogenics and low-noise amplifier to boost SNR.
 - *: P. Sikivie, Phys. Rev. Lett. 51, 1415 (1983).

Conversion Power:

$$P \sim g_{a\gamma\gamma}^2 \left(
ho_a/m_a
ight) B^2 Q_c V C_{nml}$$

Conversion Power:

Background

$$P \sim g_{a\gamma\gamma}^2 (\rho_a/m_a) B^2 Q_c V C_{nml}$$

(Matrix element)²

Conversion Power:

$$P \sim g_{a\gamma\gamma}^2 (\rho_a/m_a) B^2 Q_c V C_{nml}$$

- (Matrix element)²
- Axion number density

Conversion Power:

$$P \sim g_{a\gamma\gamma}^2 (\rho_a/m_a) B^2 Q_c V C_{nml}$$

- (Matrix element)²
- Axion number density
- Virtual photon number density

Conversion Power:

$$P \sim g_{a\gamma\gamma}^2 (\rho_a/m_a) B^2 Q_c V C_{nml}$$

- (Matrix element)²
- Axion number density
- Virtual photon number density
- Enhancement of outgoing photon density of states

Conversion Power:

$$P \sim g_{a\gamma\gamma}^2 (\rho_a/m_a) B^2 Q_c VC_{nml}$$

- (Matrix element)²
- Axion number density
- Virtual photon number density
- Enhancement of outgoing photon density of states
- Effective volume occupied by cavity mode
 - \Rightarrow best for low-order TM modes: $L \sim v^{-1}$

Microwave Cavity Axion Searches - Noise

The Radiometer Equation:

$$\mathsf{SNR} = \frac{P}{kT_{\mathcal{S}}} \sqrt{\frac{t}{\Delta \nu_a}}$$

Microwave Cavity Axion Searches - Noise

The Radiometer Equation:

$$\mathsf{SNR} = \frac{P}{kT_S} \sqrt{\frac{t}{\Delta \nu_a}}$$

• System noise temperature: $T_S = T + T_N$.

Microwave Cavity Axion Searches – Noise

The Radiometer Equation:

$$SNR = \frac{P}{kT_S} \sqrt{\frac{t}{\Delta v_a}}$$

- System noise temperature: $T_S = T + T_N$.
- Linear detection:

$$Q_a \gg Q_c \Rightarrow \Delta v_a \ll \Delta v_c$$

Microwave Cavity Axion Searches – Noise

The Radiometer Equation:

Background

$$SNR = \frac{P}{kT_S} \sqrt{\frac{t}{\Delta v_a}}$$

• System noise temperature: $T_S = T + T_N$.

Linear detection:

$$Q_a \gg Q_c \Rightarrow \Delta v_a \ll \Delta v_c$$

In practice, use a tunable microwave cavity:

$$\boxed{\frac{\mathrm{d}v}{\mathrm{d}t} \propto \frac{m_a^2}{T_S^2} B^4 Q_c V^2}$$

Collaboration of U. Washington (host),
 U. Florida, LLNL, UC Berkeley, NRAO,
 Sheffield U.

ADMX-HF

- Collaboration of U. Washington (host),
 U. Florida, LLNL, UC Berkeley, NRAO,
 Sheffield U.
- 1996-2009: excluded KSVZ axions with 1.9 μ eV < m_a < 3.6 μ eV (460 860 MHz).*

^{*:} S. J. Asztalos et al., Phys. Rev. Lett. 104, 041301 (2010).

Background

- Collaboration of U. Washington (host). U. Florida, LLNL, UC Berkeley, NRAO, Sheffield U.
- 1996-2009: excluded KSVZ axions with $1.9 \,\mu\text{eV} < m_a < 3.6 \,\mu\text{eV} \,(460 - 860)$ MHz).*
- Current focus is reducing T_S to improve scan rate:

^{*:} S. J. Asztalos et al., Phys. Rev. Lett. **104**, 041301 (2010).

 Collaboration of U. Washington (host). U. Florida, LLNL, UC Berkeley, NRAO, Sheffield U.

ADMX-HF

- 1996-2009: excluded KSVZ axions with $1.9 \,\mu\text{eV} < m_a < 3.6 \,\mu\text{eV} \,(460 - 860)$ MHz).*
- Current focus is reducing T_S to improve scan rate:
 - Liquid Helium → Dilution refrigerator expected in 2015.
 - Will improve $\frac{dv}{dt}$ by factor of 400!

*: S. J. Asztalos et al., Phys. Rev. Lett. **104**, 041301 (2010).

Background

- Collaboration of U. Washington (host). U. Florida, LLNL, UC Berkeley, NRAO, Sheffield U.
- 1996-2009: excluded KSVZ axions with $1.9 \,\mu\text{eV} < m_a < 3.6 \,\mu\text{eV} \,(460 - 860)$ MHz).*
- Current focus is reducing T_S to improve scan rate:
 - Liquid Helium → Dilution refrigerator expected in 2015.
 - Will improve $\frac{dv}{dt}$ by factor of 400!
 - Enabled by SQUID technology.

*: S. J. Asztalos et al., Phys. Rev. Lett. **104**, 041301 (2010).

ADMX-HF (High-Frequency)

• Will scan in parallel with ADMX starting around 5 GHz (\sim 20 μ eV).

• Will scan in parallel with ADMX starting around 5 GHz (\sim 20 μ eV).

ADMX-HF

 Will serve as an R&D testbed for extending the microwave cavity search principle to higher frequencies.

ADMX-HF (High-Frequency)

Background

- Will scan in parallel with ADMX starting around 5 GHz (\sim 20 μ eV).
- Will serve as an R&D testbed for extending the microwave cavity search principle to higher frequencies.
- But can reach the axion model band with current technology:

• Will scan in parallel with ADMX starting around 5 GHz (\sim 20 μ eV).

ADMX-HF

- Will serve as an R&D testbed for extending the microwave cavity search principle to higher frequencies.
- But can reach the axion model band with current technology:
 - Dilution refrigerator in initial design

• Will scan in parallel with ADMX starting around 5 GHz (\sim 20 μ eV).

ADMX-HF

- Will serve as an R&D testbed for extending the microwave cavity search principle to higher frequencies.
- But can reach the axion model band with current technology:
 - Dilution refrigerator in initial design
 - Tunable Josephson Parametric Amplifiers (JPAs): low-noise amplifiers developed ~ 2009

ADMX-HF Collaboration

- Yale University (host)
 - Steve Lamoreaux, Yulia Gurevich, Ben Brubaker, Sid Cahn
- UC Berkeley

Karl Van Bibber, Tim Shokair, Austin Lo, Jaben Root

- <u>Lawrence Livermore National Lab</u>
 Gianpaolo Carosi
- CU Boulder/JILA
 Konrad Lehnert

ADMX-HF 00000000

Background

Background

9 T Magnet

ADMX-HF

ADMX-HF

00000000

Background

- 9 T Magnet
- Dilution Refrigerator with T_{min} ~ 20 mK

ADMX-HF

00000000

Background

ADMX-HF Layout

- 9 T Magnet
- Dilution Refrigerator with $T_{\rm min} \sim 20 \ {\rm mK}$
- Magnet and fridge vacuum and cryogenic systems integrated summer 2013.

 SS, electroplated with OFHC Cu, annealed.

ADMX-HF

 SS, electroplated with OFHC Cu, annealed.

ADMX-HF

00000000

• $Q_c \sim 20,000$.

Cavity and Motion Control

 SS, electroplated with OFHC Cu, annealed.

ADMX-HF

- $Q_c \sim 20,000$.
- TM₀₁₀ tunable from $3.8 - 5.9 \text{ GHz by } 180^{\circ}$ rotation of Cu rod.

ADMX-HF

00000000

Cavity and Motion Control

- SS, electroplated with OFHC Cu, annealed.
- $Q_c \sim 20,000$.
- TM₀₁₀ tunable from $3.8 - 5.9 \text{ GHz by } 180^{\circ}$ rotation of Cu rod.
- Cryogenic motion control via stepper motor/kevlar line -0.01° precision.

Cavity and Motion Control

- SS, electroplated with OFHC Cu, annealed.
- $Q_c \sim 20,000$.
- TM₀₁₀ tunable from 3.8 – 5.9 GHz by 180° rotation of Cu rod.
- Cryogenic motion control via stepper motor/kevlar line – 0.01° precision.
- Final cryogenic testing at LLNL: shipping to Yale by end of June.

 JPA is both quantum-limited and tunable!

ADMX-HF

ADMX-HF

Josephson Parametric Amplifier

- JPA is both quantum-limited and tunable!
- Standard Quantum Limit for linear detection:

 $kT_N = hv$ (240 mK at 5 GHz).

Josephson Parametric Amplifier

- JPA is both quantum-limited and tunable!
- Standard Quantum Limit for linear detection:

 $kT_N = h\nu$ (240 mK at 5 GHz).

 Installed at Yale summer 2013: in situ tuning 4.6 – 6.4 GHz.

Analysis is conceptually simple, requires minimal data processing:

ADMX-HF

Analysis is conceptually simple, requires minimal data processing:

 Cavity signal is mixed down to MHz and digitized.

ADMX-HF

Analysis is conceptually simple, requires minimal data processing:

- Cavity signal is mixed down to MHz and digitized.
- Compute power spectrum and look for excess power in each axion-width bin.
- Step resonance by $\Delta v_c/2$ and repeat.

Analysis is conceptually simple, requires minimal data processing:

- Cavity signal is mixed down to MHz and digitized.
- Compute power spectrum and look for excess power in each axion-width bin
- Step resonance by $\Delta v_c/2$ and repeat.
- T_S calibrated in situ using blackbody source at known temperature.

Status and Projected Exclusion

 ADMX-HF commissioning this summer, taking data within the year.

Status and Projected Exclusion

- ADMX-HF commissioning this summer, taking data within the year.
- Three years of data with current technology:

 $16 - 33 \,\mu\text{eV}$ at $1.5 \times KSVZ$

ADMX-HF

ADMX-HF

$$\frac{\mathrm{d}v}{\mathrm{d}t} \propto \frac{m_a^2}{T_S^2} B^4 Q_c V^2$$

• SQL:
$$T_S \ge v = m_a$$

ADMX-HF

$$\frac{\mathrm{d}v}{\mathrm{d}t} \propto \frac{m_a^2}{T_S^2} B^4 Q_c V^2$$

$$\frac{\mathrm{d}v}{\mathrm{d}t} \propto \frac{m_a^2}{T_c^2} B^4 Q_c V^2$$

Background

• SQL:
$$T_S \ge v = m_a$$

ADMX-HF

$$\frac{\mathrm{d}v}{\mathrm{d}t} \propto \frac{m_a^2}{T_c^2} B^4 Q_c V^2$$

Background

• SQL:
$$T_S \ge v = m_a$$

ADMX-HF

- B ∝ \$\$
- $Q_c \propto v^{-2/3}$ for copper.

$$\frac{\mathrm{d}v}{\mathrm{d}t} \propto \frac{m_a^2}{T_c^2} B^4 Q_c \frac{V^2}{V^2}$$

• SQL:
$$T_S \ge v = m_a$$

ADMX-HF

- B ∝ \$\$
- $Q_c \propto v^{-2/3}$ for copper.
- $\sim V \propto v^{-3}$

$$\frac{\mathrm{d} v}{\mathrm{d} t} \propto \frac{m_a^2}{T_s^2} B^4 Q_c V^2$$

Background

• SQL:
$$T_S \ge v = m_a$$

ADMX-HF

- B ∝ \$\$
- $Q_c \propto v^{-2/3}$ for copper.
- \circ $V \propto v^{-3}$

High frequencies are hard. What can we improve?

$$\frac{\mathrm{d}v}{\mathrm{d}t} \propto \frac{m_a^2}{T_c^2} B^4 Q_c V^2$$

• SQL:
$$T_S \ge v = m_a$$

ADMX-HF

- B ∝ \$\$
- $Q_c \propto v^{-2/3}$ for copper.
- \bullet $V \propto v^{-3}$

High frequencies are hard. What can we improve?

Boost Q_c: Hybrid superconducting-normal cavities.

$$\frac{\mathrm{d}v}{\mathrm{d}t} \propto \frac{m_a^2}{T_c^2} B^4 Q_c V^2$$

• SQL:
$$T_S \ge v = m_a$$

•
$$Q_c \propto v^{-2/3}$$
 for copper.

•
$$V \propto v^{-3}$$

High frequencies are hard. What can we improve?

- Boost Q_c : Hybrid superconducting-normal cavities.
- Evade SQL: Single-photon detection and/or squeezed states.

$$\frac{\mathrm{d}v}{\mathrm{d}t} \propto \frac{m_a^2}{T_c^2} B^4 Q_c V^2$$

• SQL:
$$T_S \ge v = m_a$$

- B ∝ \$\$
- $Q_c \propto v^{-2/3}$ for copper.
- $V \propto v^{-3}$

High frequencies are hard. What can we improve?

- Boost Q_c : Hybrid superconducting-normal cavities.
- Evade SQL: Single-photon detection and/or squeezed states.
- Avoid V suppresion: Higher-order modes and/or power-combining cavities.

Extra Slides

Background

Hybrid Superconducting Cavities

- Superconducting cavities: high Q, but not in high field.
- Type-II superconducting thin films: $(B_{c1})_{\parallel} \sim (\lambda/d)^2$ for $d < \lambda$.
- With appropriate coatings on barrel and copper endcaps, we can increase Q by ~ the aspect ratio of the cavity (~ 6x).
- Promising materials: NbTiN, NbN, MgB₂.
- Field uniformity ($B_r < 50$ G) built in to ADMX-HF design.
- Challenges: good microwave reflectivity, proximity effect, details of stoichiometry, etc.

Single Photon Detection and Squeezed States

- Single-photon detection ⇒ no spectral resolution: thermal noise from whole cavity band but no standard quantum limit!
- $\frac{\delta P_{\ell}}{\delta P_{\rm sp}} \sim \sqrt{\frac{Q_c}{Q_a}} e^{h\nu/kT} > 1$ above ~ 10 GHz, or lower with better Q_c .*
- Squeezed states: beat SQL without sacrificing phase information!
- Axion signal uncorrelated with lab phase reference on long timescales.
- Practical utility limited by loss in commercial components, but may soon be worthwhile.

*: S. K. Lamoreaux et al., Phys. Rev. D 88, 035020 (2013).

Large volumes at high frequencies

- Higher-order TM modes of a large cavity: $C_{0n0} \propto v^{-2}$ (better than $V \propto v^{-3}$), but mode crossings are increasingly a problem for $n \gtrsim 3$.
- Power-combining multiple small cavities in a large magnetic field volume: practical challenges keeping resonances in step.
- Photonic band gap cavities?

ADMX and ADMX-HF Parameters

	AMDX	ADMX-HF
В	7 T	9 T
V	220 L	1.5 L
Q_c	80,000	20,000
T	2 K (100 mK)	20 mK
T_N	1 K (50 mK)	250 mK

- $\rho_a \approx 0.45 \text{ GeV/cm}^3 \approx 7.5 \times 10^{-25} \text{ g/cm}^3 (\pm 50\%).$
- ADMX-HF Tuning: 80 mK for 180° over 2 minutes.
- For Copper at 5 GHz, theoretical $Q \sim 200,000$. Reduction factors:
 - Real materials: ~ 2x
 - Extra tuning rod surface area: ~ 1.5×
 - Real tuning rods: ~ 1.5×
 - Critical coupling: $2 \times \Rightarrow Q_c \sim 20,000$

ADMX Prospects

Cold Dark Matter Axions?

- If axions are so light, why do they form CDM rather than HDM?
- Thermal relic axions *do* form hot dark matter, like neutrinos, but there is a non-thermal axion production mechanism.
- The misalignment mechanism: anomalous PQ symmetry breaking at $\Lambda_{QCD} \Rightarrow$ a condensate of zero-momentum axions.*
- Sikivie argues that axions can re-thermalize through gravitational interactions and form a BEC.[†]
 - *: J. Preskill, M. Wise, and F. Wilczek, Phys. Lett. B **120**, 127 (1983).

 †: P. Sikivie and Q. Yang, Phys. Rev. Lett. **103**, 111301 (2009).

BICEP2 and Axions

- BICEP2: $H_I \sim 10^{14} \text{ GeV}$
- $m_a \sim 10^{-8} \text{ eV} \Leftrightarrow f_a \sim 10^{14} \text{ GeV}$ • $m_a \sim 10^{-5} \text{ eV} \Leftrightarrow f_a \sim 10^{11} \text{ GeV}$
- Inflation only creates problems for axions with f_a ≤ H_I.
 (inflationary fluctuations of axion field should be observable in CMB as unobserved isocurvature perurbations).
- A few papers* claim cosmology now favors axions with $m_a \sim 70 80 \ \mu \text{eV}$.
 - *: e.g., E. Di Valentino et al., arXiv:1405.1860 (2014).